Alternative Production of Fatty Acid Methyl Esters from Triglycerides Using Sulphated Zirconia

Elizabeth J. Eterighoa, Jon G. M. Leeb and Adam P. Harveyb

aDepartment of Chemical Engineering, School of Engineering and Engineering Technology, Federal University of Technology, Minna, Niger State, Nigeria

bSchool of Chemical Engineering and Advanced Materials, Newcastle University, NE1 7RU, UK

Abstract

Sulphated zirconia (SZ) was synthesized using two different methods with the same molar ratio (1:6) of reactants: (1) the direct mixing of ZrOCl\textsubscript{2}.8H\textsubscript{2}O and (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4}, designated as SZ\textsubscript{1}; and (2) via the conventional wet-precipitation method with a molar ratio of 1:6 rather than the conventional 15 ml H\textsubscript{2}SO\textsubscript{4} to 1g of Zr(OH)\textsubscript{4}, denoted by (SZ\textsubscript{2}). The catalysts physiochemical properties were precisely characterized by FTIR, SEM, X-ray diffraction, EDX, XPS, and Py-DRIFTS techniques. The two methods of preparation with same molar ratio of sulphating agents led to sulphated zirconias that exhibited different morphological and structural properties in terms of specific surface areas, thermal stability, acid sites, and surface sulphate. The catalysts activity was tested in thermocatalytic cracking of triglyceride; a direct conversion process for fatty acid methyl esters (biodiesel). The SZ\textsubscript{1} not only exhibited higher conversion of triglycerides but higher fatty acid methyl esters (FAMEs) yields of approximately 59\% after 3h as compared to SZ\textsubscript{2} (32\%). In addition the sulphated zirconia, SZ\textsubscript{1} was selective towards unsaturated esters whereas SZ\textsubscript{2} was selective towards saturated esters.

Keywords: Sulphated zirconia, Catalyst preparation, Thermocatalytic cracking, FAMEs

Email: jummyeterighoj@gmail.com; j.g..lee@ncl.ac.uk Adam.harvey@ncl.ac.uk

Mobile number: +2348028648808

Received: 2013/11/14

Accepted: 2013/12/30

DOI:http://dx.doi.org/10.4314/njtr.v8i2.2S